Acquired Immunity

Chapter 16

3 Lines of Defense

Specific Immunity

- Defense against distinct invaders
 - Memory develops
 - Acquired
 - Triggered by antigens
- Major players: B and T lymphocytes
Antigens

- **Examples**
 - Bacterial components – cell walls, capsules, pili, fimbriae, flagella
 - Viruses – proteins & glycoproteins
 - Fungi, protozoans – cell walls, proteins, etc.
 - Food, dust, pollen

- **Routes of Entry**
 - Ingestion
 - Inhalation
 - Breaks in skin and mucous membranes
 - Direct injection
 - Organ transplants and skin grafts

3 Types of Antigens

Lymphatic System

- Screens body tissues for foreign antigens
- Lymphatic vessels
 - Lymphatic cells
- Lymphatic vessels
 - Transport lymph
Lymphoid Cells
- Develop from stem cells in bone marrow
- Include B-lymphocytes and T-lymphocytes

Lymph Nodes
- Contain leukocytes
- Receive lymph -- afferent vessels
- Drain lymph -- efferent vessels

Other Lymphoid Tissues & Organs
- Spleen
- Tonsils and mucosa-associated lymphoid tissue (MALT)
 - "Crypts"
 - MALT
 - Appendix, lymphoid tissue of the respiratory tract, and Peyer's patches
B-lymphocytes

- Spleen, lymph nodes, red bone marrow, and Peyer’s patches
- Small % circulate in the blood
- Major function → secretion of antibodies
- Antibody-mediated (humoral) response

Antibodies

- Immunoglobulins (Ig)
- Soluble proteins that bind antigens
- Secreted by plasma cells

Functions of Antibodies

- Complementary to Ag
- Results:
 - Activation of complement
 - Stimulation of inflammation
 - Killing by oxidation
 - Agglutination
 - Neutralization
 - Opsonization
Functions of Antibodies

- Agglutination
- Neutralization
- Opsonization

5 Classes of Antibodies

- Light chain
- Heavy chain
- Carbohydrates
- J Chain
- Alpha heavy chain

<table>
<thead>
<tr>
<th>Class</th>
<th>Characteristics of the Five Classes of Immunoglobulins</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgM</td>
<td>Agglutination and neutralization, low affinity, Thy. Membrane secretion, circulating in 40-50% of serum</td>
</tr>
<tr>
<td>IgG</td>
<td>High affinity, binds to Fc receptor, phagocytosis, complements activation</td>
</tr>
<tr>
<td>IgA</td>
<td>Secretory, binds to Fc receptor, attaches to gut and respiratory tract</td>
</tr>
<tr>
<td>IgE</td>
<td>High affinity, binds to mast cell, basophil, and eosinophil</td>
</tr>
<tr>
<td>IgD</td>
<td>Low affinity, binds to B lymphocytes, Reticular, monocytes, and macrophages</td>
</tr>
</tbody>
</table>

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.
B-cell Receptor (BCR)
- B-cell surface
 - Multiple copies of a single type of BCR
 - Randomly generated variable region
 - 10^{11} different B-lymphocytes

T-lymphocytes
- Circulate in the lymph and blood
- Cell-mediated immune response against:
 - Endogenous antigens
 - Intracellular pathogens
 - Abnormal body cells such as cancer cells
 - Cytotoxic and Helper T-cells

T-cell Receptor (TCR)
- Antigen binding site on T-cells
- Randomly generated
- 10^{11} different T-lymphocytes
Cytotoxic T-cells
- CD8 glycoprotein
- Directly kill certain cells
 - Cells infected with intracellular pathogens
 - Cancer cells

Helper T-cells
- CD4 glycoprotein
- Regulate the activities of B cells and cytotoxic T cells
- Secrete cytokines
 - Determine which immune response will be activated

2 Types of Helper T-cells
- Type 1 helper T-cell (T_H1)
 - Assist cytotoxic T cells
 - Express CD26 and a cytokine receptor named CCR5
- Type 2 helper T-cell (T_H2)
 - Assist B cells
 - Have cytokine receptors CCR3 and CCR4
- Helper T-cell Activation
 - Antigen presentation
 - Cytokines
Regulatory T-cells
- CD4 glycoprotein
- CD25
- Regulate immune response

Cytokines
- Interleukins (ILs)
- Interferons (IFNs)
- Growth factors
- Tumor necrosis factors (TNFs)
- Chemokines

Cytokine Network
Lymphocyte Editing

- Membrane glycoproteins
- Function: present antigens to T-cell
- First identified in transplant patients
 - Self vs. foreign

Major Histocompatibility Complex (MHC)

- Membrane glycoproteins
- Function: present antigens to T-cell
- First identified in transplant patients
 - Self vs. foreign

MHC Proteins

- MHC 1
 - All nucleated cells
- MHC 2
 - Only B-cells and antigen-presenting cells
Antigen Processing

- T-independent
- T-dependent
 - Endogenous vs. Exogenous

T-independent Antigen

- Large antigen molecules
 - readily accessible, repeating antigenic determinants
- B cells bind directly
- Stimulates B cells to differentiate into a plasma cell
 - Produce antibodies
11

T-dependent Antigens

- Smaller antigens, less accessible determinants
- Helper T cells needed
- APC process the antigen
 - makes antigenic determinants more accessible
 - Exogenous vs. endogenous antigens
Exogenous vs. Endogenous Processing

Exogenous
- Extracellular bacteria
- Extracellular viruses
- Phagocytized by macrophage
- Digested in phagolysosome
- Presented on MHC II

Endogenous
- Intracellular bacteria, viral and cancer proteins
- Processed in endoplasmic reticulum
- Presented on MHC I

Antibody-mediated Response
- Against exogenous pathogens
- Components:
 - B cell activation and clonal selection
 - Memory B cells
B-cell Activation

B-cell activation takes TIME . . .

Plasma Cells
- Majority of cells produced during B cell proliferation
- Secrete antibody molecules specific for the antigen
- Short-lived cells
 - Die within a few days of activation
 - Antibodies can persist
Memory B-cells

- Do not secrete antibodies
- BCRs specific for antigen that triggered their production
- Long-lived cells
 - Persist in the lymphoid tissue
 - Available to initiate antibody production if the same antigen is encountered again

Cell-mediated Immune Response

- Responds to intracellular pathogens and abnormal body cells
- Intracellular pathogens
 - viruses
 - intracellular bacteria
- Triggered when antigens are displayed on the host cell’s surface
Tc Cell Activation

Memory T-cells
- TCRs specific for antigen that triggered their production
- Long-lived cells
 - Persist in the lymphatic system
- Secondary immune response if exposed to same antigen again
Enzymes
Complement
Interferons
Defensins
Leukocytes

Pathway A
Non-Specific
Natural Immunity
(reacts in hours)

Pathway B
Specific
Immunity
(reacts in days)

Initial Infection

Enzymes
Complement
Interferons
Defensins

Leukocytes

Pathogen is destroyed by non-specific action

Specific
Immunity

T-Cells
B-Cells

Specific
Features:
- T-Cell mediated production
- Antibody production